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Transient Analysis for Compressible Fluid Flow in Transmission 
Line by the Method of Characteristics 

Woo-Gun Sim* and Jong-Ho Park** 
(Received December 7, 1995) 

Transient analysis for compressible fluid flow has been conducted to evaluate the dynamic 

characteristics of the dead-ended or volume-terminated transmission lines following a sudden 

pressure change at its entrance. The two partial-differential equations, based on the conservation 

of mass, energy and momentum, were derived for the one-dimensional adiabatic compressible 

flow with friction and entrance head loss. The governing equations describing the present 

transient-state flow are hyperbolic, and the boundary conditions include a fixed volume 

termination at the exit and sinusoidal disturbance in the sudden pressure change at tube 

entrance. The method of characteristics is used to transform the partial differential equation into 

the particular total differential equations, which can be integrated along the characteristic lines. 

The present result shows good agreements with the existing results. The effects of tube length, 

tube diameter and end volume are evaluated on the responses of the pressure and on the 

damping factor. 

Key Words : Dynamic Response, Transmission Line, Method of Characteristics, Characteristic 

Line, Damping Factor, Lumped Acoustic Element Method 

Nomenclature 
A : Cross section area of the pipe 

c : Acoustic velocity 

Cc : Critical damping coefficient 

Ck : Coefficient of entrance loss 

D : Pipe diameter 

f : Friction factor 

g : Acceleration of gravity 

H : Pressure head 

k : Fluid-elastic stiffness coefficient 

L : Pipe length 

m : Effective mass of fluid in the pipe 

p :Pressure 

Q : Flow rate 

R e  : Reynolds number 

t : Time 

T : Period of oscillation 

u : Mean flow velocity 

Vq : Fixed volume of the receiver 
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: Axial coordinate 

Greek Letters 
: Damping factor 

: Viscosity of fluid 

: Density of fluid 

: Circular frequency 

Superscript 
: Nondimensional parameter 

Subscripts 
Based on acoustic velocity 

Entrance 

Based on lumped acoustic element 

method 

: Mean value 

: Sending reservoir 

: Receiver 

:Static step input 



174 Woo-Gun Sim and Jong-Ho Park 

1.Introduction 

The dynamic responses of transmission lines to 

a sudden pressure change including sinusoidal 

inputs have extensively been studied by a numeri- 

cal method because (a) it has an application to 

the instrument and control system design (b) it is 

useful to predict the practical pressure-time rela- 

tionship and to estimate the performance of the 

proposed instrument and control system, and (c) 

it is required to develop a computational method 

for evaluating the response more rigorously. The 

information on the dynamic characteristics of 

dead-ended or volume terminated transmission 

lines of the system might be useful in a reasonably 

accurate analysis of the instrument and control 

system, especially in case of practical pressure 

measurement at a remote location; e.g., pressure 

measurement of steam generator in Nuclear 

Power Plants. An initial time delay and transient 

attenuation or amplification of pressure at the 

fixed volume termination will occur following a 

sudden pressure change. 

A theoretical analysis of the frequency response 

of the pneumatic transmission lines has been 

performed by lberall (1950). The analysis was 

based on incompressible viscous flow and 

modified to allow compressibility. Some theoreti- 

cal and/or  experimental investigations on the 

dynamic response of the transmission lines for 

pneumatic control systems have been conducted 

(Bradner,1949; Schuder and Binder, 1959; Moise, 

1954; Rohmann and Grogen, 1957). The one 

-dimensional momentum and continuity equa- 

tions were linearized to obtain an equation of the 

same form as that for electrical transmission line 

containing distributed resistance, inductance, and 

capacitance. Steady sinusoidal disturbances were 

considered as a boundary condition at the tube 

entrance (Moise, 1954). Some experimental work 

on this problem has been performed to validate 

the analytical method. The response to the step 

units has been evaluated based on mass, energy 

and momentum equations with Laplace transfor- 

mation (Schuder and Binder, 1959). It was found 

that the application of the Schuder & Binder's 

theory to the systems involving short, large-diam- 

eter lines with small terminal volumes is limited. 

In the most previous theoretical studies, the 

response to the static step inputs or to the 

sinusoidal disturbances has been analyzed sepa- 

rately. The head losses at the entrance and the exit 

of transmission lines were not considered to solve 

the problem and the friction head loss was 

evaluated based on laminar flow. Practically, it is 

necessary to evaluate the response to both inputs 

simultaneously when a pressure change applied at 

sending end contains both static step inputs and 

sinusoidal disturbances. In some cases, a reso- 

nance will occur due to the coincidence of the 

frequencies of acoustic waves and sinusoidal 

inputs. The acoustic waves might be generated as 

a result of waterhammer (Chaudhry, 1987) and/  

or a lumped acoustic devices due to the compres- 

sibility of a fluid (Kinsler et al., 1982); this 

lumped acoustic control system can be treated as 

a Helmhohz resonator. To estimate the response 

more rigorously, it is required to consider the 

entrance and exit head losses, especially for rela- 

tively short transmission lines and to calculate the 

friction loss coefficient for laminar or turbulent 

flow. On this basis, the present study has been 

handled. 

The use of computers for analyzing hydraulic 

transients has increased considerably in recent 

years, and the sophisticated numerical methods 

have been introduced for such analyses (Bulaty 

and Niessner, 1985; Wiggert, et al., 1985). The 

numerical methods have permitted the computa- 

tion of more precise results and have made the 

analysis of complex systems possible. The govern- 

ing equations describing the present transient 

-state flow are hyperbolic partial differential 

equations. A general solution to the partial differ- 

ential equations is not available. In the present 

work, the method of characteristics (Evangelisti, 

1969; Abbott, 1966; Holloway and Chaudhry, 

1985) is used to transform the partial differential 

equations into the particular total differential 

equations. The equations for simulating the trans- 

mission line are derived and the boundary condi- 

tions for the fixed volume termination including 
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entrance loss effect are developed. The present 

numerical method is free of restrictions, which 

can arises from an analytical approach. 

The pressure-time relationships at the receiver 

end with a fixed terminal volume,such as initial 

time delay and transient attenuation or amplifica- 

tion are illustrated. The effects of tube length, end 

volume, and tube diameter on the responses have 

been studied, and frequency response analysis has 

been conducted by the methods used in linear 

analysis. The present results have been compared 

to the results obtained by an existing analytical 

approach (Schuder and Binder, 1959). The damp- 

ing factc, r is evaluated to show the degree of 

damping on the response of pressure head at the 

terminal volume. 

2. Derivation of  the Equations for 
Trans ient -State  Flow 

The piping system as shown in Fig. l(a) is used 

for tran,;fer of pressurized fluid and operates 

under t ime-varying conditions imposed by a sud- 

den pressure change at its entrance. The receiver 

represents the internal volume of the instruments 

or controller and the sending end refers to the 

connection at the pressure vessel or the output of 

a pressure transmitter. The fluid in the system is 

initially static until a sudden pressure input 

occurs at the sending end. Tradit ionally,  the 

unsteady behaviour of the fluid flow are analyzed 

without regard to the motion of the piping for 

sufficiendy rigid pipe. The transients propagate at 

the acoustic velocity of the fluid in the pipe. In the 

present analysis, it is assumed that ( l )  the pres- 

sure and temperature changes are small compared 

to the normal values before the sudden changes, 

(2) the pipe walls do not stretch regardless of 

pressure inside the pipe, (3) the pipe line remains 

full of fluid at all times and the minimum pressure 

inside the pipe is in excess of the vapor pressure 

of liquid and (4) acoustic velocity is treated as 

constants along the pipe and evaluated at the 

initial temperature and the mean value of the 

pressure, 

The unsteady momentum and continuity equa- 

tions are applied to a control volume containing 

a section of  transmission line by using the 

Reynolds transport theorem. In these equations of  

transient-state flows, there are two dependent 

variables, pressure p and flow velocity u, and two 

independent variables, distance x and time t. 

These governing equations,formed a pair of 

quasilinear hyperbolic partial differential equa- 

tions, may be written in a matrix form as 

OF + M  OF 
~3t ~x-x = E  (1) 

M =  1 ; where = ( u ) ;  P 

0 

In the above equations, P, J, c and D denote 
the density of fluid, friction factor, acoustic veloc- 

ity and the pipe diameter, respectively. The fric- 

tion factor varies with Reynolds number; i. e., for 

L 

to+ At 
P 

At A B 

(a) (b) 
Fig. 1 (a) System nomenclature and (b) characteristic lines in the x-I plane. 
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laminar flow f = 6 4 / R e  and for turbulent flow 1/ 

f f = 2  Iogio(Re/ f f - ) -0 .9  where R e = p u D / / z  
(Sabersky, elc., 1971). Under considerations, the 

acoustic velocity is obtained by c = ~ p  - =  

where K denotes bulk modulus of elastic- 

ity of  the fluid and R is the gas constant. In most 

engineering applications, the convective accelera- 

tions, u(ap/&), u(au/&), are small compared 

to the other terms. Similarly, the slope term in the 

right hand side of the momentum equation is 

usually small and may be neglected. 

The method of characteristics has become quite 

popular  and is extensively used for the solution of  

one-dimensional  transient problems.This method 

has proven to be superior to other numerical 

methods in several aspects, such as the correct 

simulation of  steep wave fronts, the illustration of 

wave propagation, the ease of programming and 

the efficiency of computations. The governing 

equations are transformed into four ordinary 

differential equations by the method of character- 

istics. The interested reader on the method of  

characteristics is referred to "Applied Hydraulic 

Transients" by Chaudhry (1987). 

Now, let us discuss the physical significance of 

the characteristics line in the x - l  plane as shown 

in Fig. l(b). In as much as acoustic velocity, c, is 

generally constant for a given pipe, dx /d t  plots 

as a straight on x-r plane. These lines on the x - t  
plane are the "characteristic" lines along which 

the compatibil i ty equations are valid. Mathemati- 

cally, these lines divide the x - t  plane into two 

regions, which may be dominated by two different 

kinds of  solution; i.e., the solution may be dis- 

continuous across these lines. Physically, they 

represent the path traversed by a disturbance. 

It is a common practice in hydraulic engineer- 

ing to compute the pressure in the pipeline in 

terms of  head, H = p / p g ,  and use the flow rate 

instead of the flow velocity; e.g, Q = u A ( A  = 
zD2/4). Eventually, integrating of  the compatibil-  

ity equation (derived from governing equations) 

along the characteristic lines, C + ( d x / d t =  +c),  
leads to 

(Hp - HA) +_cA(  O~ - QA) 

f~x  + ~ Q A I  QAI =0 (2) 

and along C-  line, the following negative charac- 

teristic equation is obtained; 

C 
(Hp - H~) - ~ A  ( Op - QB) 

lax 
2gDA 2 QsIQ, I=O (3) 

These two compatibil i ty equations are the basic 

algebraic relations that describe the transient 

propagation of pizeometric head and flow in the 

transmission line. 

In order to generalize the present problem, it is 

convenient to define the following nondimen- 

sional parameters: 

H + _  H -  H ~ j  Q+ = Q _ 
H ~ -  H~j  ' g-eAA( H~ - Hr~D 

K +  = ( I  + Ck)g ( H s -  Hr~f) ~b~ 

K + -- ( 1 ~cC2k)~g 

+ c A  - 

R + -  2DA f AtlOl, D~=~V~-qdt (4) 

where Hre, denotes the reference pressure head, 

Ch is the coefficient of entrance loss, Vq is the 

fixed volume of the receiver and the subscript s 

stands for the step input (steady component of the 

Kres rt are associated with inputs). Thus, + and K + 

the pressure head losses at the entrances of the 

sending reservoir and the receiver, respectively, 

and R + is related to the pipeline resistance coeffi- 

cient. Generally, the initial pressure before the 

sudden pressure change is used as a reference 

pressure. 

By solving for Qp with the aid of the nondimen- 

sional parameters, the compatibili ty equations 

may be written in dimensionless form as 

C+; Q; = C ~ -  H ;  
Ce + Hp C-; Q+= + + (5) 

where;  C +=(1 + + + - -RA)QA+HA 
C ~ = ( I - R + ~ , q  + H + B I ~ g ' B  - -  B 

The constants C~ and C~ are known for each 

time step. In Eq. (5), two unknowns, namely, H + 

and Q~, can be determined by solving these 

equations simultaneously : i.e., by first eliminat- 

ing H + in Eq. (5), 
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+ _ _  + + Q~ -0.5(C~ + C~) (6) 

then HF may be found directly from either one in 

Eq. (5). Thus, by using Eqs. (5) and (6), condi- 

tions at all interior points at a time step can be 

determined. 

To illustrate the use of above equations, the 

pipeline is. divided into n reaches, each having A/x 

(=cA/t). The ends of these reaches are called 

sections. 'The end sections of the pipeline are 

referred to as boundaries. 

3. Boundary Conditions 

At either end of the transmission line, only one 

of the compatibility equations is available. Spe- 

cial boundary conditions are required to deter- 

mine the transient head and discharge at the 

boundaries; i .e.,  the tube entrance (sending reser- 

voir) and the fixed volume termination (receiver). 

These are developed by solving the compatibility 

equations with the conditions imposed by the 

boundaries. 

In the present analysis, it is assumed that the 

nondimensional pressure head level at the sending 

reservoir changes in a known manner after the 

sudden pressure change; 
+ _ _  + + ~ -  

H , - ~ - H ~  + A / H  sm wt (7) 

where co is the circular frequency and A/H+( = 

A / H / ( H ~ - H ~ j ) )  is the nondimensional ampli- 

tude of the sinusoidal disturbance. Let the 

entrance losses at tube entrance be given by 

C kQl 
h~= 2 g A  z (8) 

Then, the nondimensional pressure head at the 

entrance of the transmission line is expressed as 

- - L / +  K + g ~ + 2  t t ~ - -  ,1 +,.~+- ~ ,  (9) 

in which the subscript "1" stands for the entrance 

as the first node point in tube length. To develop 

the boundary condition, this equation is solved 

simultaneously with the negative characteristic 

equation in Eq. (5). By eliminating Hi  ~ from the 

negative characteristic equation ( P =  1) and the 

above equation, the following simplified equation 

is obtained 

r2~+ tq+2+ + + + 0 - ( C 2  + H~+)=  . . . . .  ~1 Q1 (10) 

for the flow rate at the entrance. Solving this 

equation and neglecting the negative sign with the 

radical term yield 

l + ~ f l  4 + + + - -  + K r ~ + ( C 2  + H r ~ )  
Qi ~ -  2Kr+ ~ (l l) 

by which the entrance pressure level., H~-, is 

determined from Eq. (9). 

To develop the boundary condition at the fixed 

volume termination in a similar procedure shown 

for the entrance of the transmission line, the head 

loss at the exit end is written as 

CkO~ 
hrt = 2 g A  2 (12) 

and the pressure head is expressed in a dimension- 

less form as 

_ K + f)+2 H~=:H+~t , ~ n  (13) 

in which n stands for the end of the transmission 

line, which means n reaches are used for calcula- 

tion, and H r+t denotes the nondimensional pres- 

sure head at the receiver. The discharge at the end 

of the pipeline is equal to the rate of increase 

within the receiver; 

Vqg dH~ 
Au--=T (It (14) 

In the present analysis, it is assumed the 

changes of mass within the receiver occur 

adiabatically and reversibly. Thus, the nondimen- 

sional pressure head at receiver may be written as 

H +, - - H  + * + r~+,q+ - ,.~ u ~ , ~ ,  (15) 

In the above equation, the superscript * stands 

for the known value at the previous time step (t* 

= t - - A / I ) .  Eliminating H+t from the positive 

characteristic equa t ion(P- -n )  and from the 

above equation yields 

+ + 2  + + K r t Q ,  - ( I + D ~ ) Q , + ( C ~  L--H~t*)=0 (16) 

By solving this equation and neglecting the 

positive sign with the radical term, the nondimen- 

sional discharge at the end of the pipeline is 

expressed as 

+ + D ~ ) - 4 K ~ t ( C , - 1  re I Q,  ( t + D + ) _ / ~  + 2 . . . .  H+,~ 
2K;t 

(17) 
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Now, the pressure heads at the receiver and the 

end of the pipeline, H +,~ and H +, may be deter- 

mined from Eqs. (15) and (13), respectively. In 

the case of very small receiver Sizes, the pipeline 

may be treated as a dead-ended transmission line. 

Since a particle speed at the boundary is zero, the 

positive characteristic equation at the dead end is 
+ _ _  + + written as Q . - C ~ - ~ - H n :  O, from which the 

pressure head level at the end is determined; H~ + : 

C~+_1. 

4. Calculation Procedures 
and Numerical  Results 

Numerical results were calculated by choosing 

the working fluid (water or air), the geometry of 

the system (diameter and length of the pipe and 

end volume of the receiver), the input signal (unit 

step input and sinusoidal disturbance), the 

entrance head losses and the number of reaches. 

From the chosen values, the nondimensional 

I f  .... If+~t, Da, defined in Eq. (4), can parameters, + + 

be determined, and the local pipeline resistance 

coefficient, R +, in a given time can be calcu- 

lated for laminar or turbulent flows. In the calcu- 

lations for R + and D +, the time step is obtained 

by reach size and acoustic velocity, z l t = Z l X / c =  

L / n c .  In the present analysis,the entrance head 

loss coefficients are 0.5 for entrance flow from 

reservoir and 0.05 for exit flow to reservoir and 

acoustic flow velocities of 1500 m / s  for water 

and 340 m / s  for air are assumed, as a general 

example. The viscosities of water and air are 

assumed to be 9.13x10 ~ k g s ' s e c / m  2 and 1. 

883x10 -6 kg•" s e c / m  2, respectively. The orders 

of the time step, used in the present analysis,are 10 

-3 for pneumatic system and 10 6 for hydraulic 

system; n-~ 15. 

The fluid starts from a static condition (H  += 

0, Q+=0)  and eventually ends in a harmonic 

disturbance conditions including static compo- 

nents. The nondimensional amplitude of the 

sinusoidal disturbance with respect to the static 

term is 0.2 in the present analysis. All interior 

conditions in the pipeline are determined by using 

Eqs. (5) and (6) with the known surrounding 

1.4 I I I 

J/in 

o.S 

O 6  

O 4  

O 2  

I 

Fig. 2 Comparison of the existing analytical results ( n, 

@, x) and the present numerical results ( - -  
. . . .  , ..... ) of the dynamic responses to the static 
step inputs for pneumatic systems, /)=6.4 mm: 

- -  [] - - ,  L=10m Vq=2000cc 
--- ~ --, L=15m Vq=5000cc 
. . . .  x --,L=15rn Vq=5000cc 

conditions calculated in the previous time step. 

The boundary conditions are calculated by using 

Eqs. (9) and (11) for sending end and Eqs. (13) 

and (17) for receiving end. The response to the 

input is determined by using Eq. (15). For the 

sake of brevity,  only samples of the 

computational results are presented. 

To verify the present numerical method, the 

method is applied to pneumatic transmission lines 

with static step inputs, where the analytical 

approach is applicable, and then the results are 

compared with the existing analytical results 

(Schuder and Binder, 1959). Present results 

showed good agreements with the existing results 

in Fig. 2. The effects of tube length, tube diameter 

and terminal volume on the response of pneu- 

matic transmission lines to static inputs are 

shown in Fig. 3. The period of the peak-to-peak 

for discharge rate at the end of the transmission 

line can be estimated by considering the acoustic 

velocity and the tube length. The dynamic 

responses converges more or less within the 

period based on the lumped acoustic method, 

which will be shown later. As can be seen from 

the results, some general remarks are; (a) viscous 

damping increases with increasing tube length 

and decreasing tube diameter and (b) fluid-elastic 
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stiffness generated by the compressibility of the 

fluid becomes predominant with decreasing termi- 

nal volume. The friction loss in pipeline will 

increase 'with increasing tube length and decreas- 

ing tube diameter. Fluid-elastic stiffness, due to 

the terminal volume, becomes larger with decreas- 

ing the volume such that the system is in under- 

damped motion because of the relatively high 

critical damping coefficients, defined by c~= 

2,/~hk-. Here rn and k denote mass and stiffness 

coefficient of the system. In other words, with 

increasing volume of the receiver, the damping 

becomes heavier as compared to other terms and 

the dynamic characteristics of the response can be 

similar to those of the overdamped system. It is 

found that the time of the first appearance of the 

1.5 / I I 

j , /  

~.5 ! / /  

0 0.5 1 1.5 
t 

(a) 

I I 
2 2.5 

2.1o-6 i i i l i I 

1"10 -6 i , 

I ~ , ( . ,  
5"10-7 ! ,{~! ,,/~ , \ ~ - . .  ~:~"~ 

0 i , , ~ t ~ , , ~  " ~ =  - z ~ - T - - - = - - z  = = ~  

5 . 1 0  - 7  l I I I I l I 
0.2 0.4 0.6 O.B l 1.2 1A 1.6 

t 

(b) 

Fig. 3 (a) The dynamic responses to the static step 
inputs and (b) discharge rate at end of the trans- 
mission line for pneumatic systems: 

- - ,  L--IOta Vq-- 2000cc D=6.4mm 
--- , L--  30m Vq= 5000cc D=6.4mm 
- o-, L =10m Vq=2000cc D=5.4mm 

...... , L=lSm Vq=5000cc D=6.4mm 

- , - ,  L=15m Vu = 500cc D=6.4mm 

pressure pulse at the terminal volume can be 

approximated by L / c .  

In order to estimate the damping factor of the 

lumped acoustic element as known as a Helm- 

holtz resonator with a relatively long wave length, 

L ~ ( = c T ~ , L ) ,  the lumped acoustic impedance 

can be used. The mass and stiffness coefficients 

are written as m = p L / A  and k = pc2~ Vq, respec- 

tively. Thus, the natural frequency of the lumped 

acoustic system is w t = c , / A ~ ( L V q ) .  The damp- 

ing force, F,~, acting on the element clue to the 

friction head loss, z IH /  can be approximated as 

[ ~ =  o g z J H f A  (18) 

where 

Zl u _ ; L  u z 

In the above equation, the time derivative of the 

mean velocity in Eq. (1) is neglected, since the 

natural frequency of the present pneumatic system 

is relatively small for long transmission line and 

large terminal volume. Thus, the damping factor 

of the lumped acoustic system, due to the friction 

head loss for the laminar flow can be expressed as 

16/1 LflLVjVq 

For the systems shown in Fig. 3, the length of 

the transmission line is shorter than tile acoustic 

wave length. Thus it is possible to calculate the 

damping factor using the above equation. The 

approximated analytical results, which turns out 

to be reasonable, are presented in Table 1. 
The axial variations of the pressure head and 

flow rate are depicted in Fig. 4 for a pneumatic 

system at various times during the half of the 

period based on acoustic velocity and tube length. 

It is clearly shown the acoustic wave moves from 

right to left and then from left to right. The 

Table 1 The approximated damping factor due to 
the friction head loss. 

D ( m m )  L (m)  Va(cc) 

6.4 

10 

15 

30 

2000 

500 

5000 

5000 

0.432 

0.264 

0.836 

1.182 

5.4 l0 2000 0.718 
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0,8 

0.6 

0.4 

0.2 

I \ ', 

2 4 6 W O 2 
X 

(a) 

1,6. I0  ~ t  

1,4,10 ~ i  

O + 
1.2.10 -6  

1.10 ~ 

I . l O  ~ /  

i i i i i r 

/ ' . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' H 

X 

(b) 

Fig. 4 Axial variations of (a) pressure head and (b) 
flow rate for the pneumatic system ( L =  15m, Vq 

=5000cc, D = 6 . 4 m m )  at various times (- �9 -, l 
=0.147; . . . .  , t = 0.165; ..... , /=0.182 a n d -  
, /=0.2 sec): Period based on lumped acoustic 
element method, Tt=0.691 sec; period based on 
acoustic velocity, Ta=0.171 sec. 

Table 2 The amplitude ratio of peak pressure to 

static step input and its response time in 

bracket, D = 6 . 4  ram. 

L V~(cc)  

(m) 2000 800 500 200 80 

1.210 1.418 1.433 1.762 1.844 
I0 

(0.275) (0.165) (0.154) (0.099) (0.091) 

1.075 1.237 1.373 1.545 1.598 
20 

(0.440) (0.235) (0.204) (0.185) (0.181) 

1.014 1.137 1.245 1.379 1.427 
30 

(0.694) (0.325) (0.296) (0.275) (0.269) 

pressure  head at r ight  end  near  the t e rmina l  

vo lume  is con t inuous ly  increased with time, whi le  

the d ischarge  rate is decreased.  The  preassure  is 

decreased a long the axial d i rect ion,  main ly  due to 

the viscous skin friction. Th i s  is the ma in  reason  

why the d a m p i n g  factor  can  be est imated by Eq. 

(19). I f  the pressure loss is s t rongly  inf luenced by 

25 

2 

1,5 

0 

l . s . l o  ~ 

l . lO ~ 

~-io t 

s.10- 

1,10 -?  

_1.5.10 -T I 

i i i 

I : i i ~ i ! 2 ", :: i / / :  : '  ', 

, , , ! 
0.005 0 0 I  0.01 $ 0 02 0.025 

t 

(a) 

I I I I 
0.0O2 0.004 O.Oe6 ooo |  o.ol 

t 

(b) 

Fig. 5 (a) Typical responses to the static step inputs and 
(b) discharge rate at the end of the transmission 
line for hydraulic systems (D=3.2mm, Vq=l 

C C ) :  

- - ,  L=O.O5m; . . . .  , L=O.lm; 

. . . . .  , L=O.5m 

the t ime de r iva t ion  o f  mean  velocity, its use is 

ques t i onab le - see  Eq. (1). 

The  ampl i tudes  o f  peak pressure of  response  to 

the static step inputs  and  the co r r e spond ing  peak 

-p ressure  response  t imes from t = 0  in bracke t  are 

shown  in Tab le  2. The  t imes of  the first appear -  

ance of  the pressure pulse are 0.029 s e c  for L = 10 

m ,  0.059 s e c  for L = 2 0  m ,  and  0.088 s e c  for L 

---30 m. Fo r  the relat ively large terminal  volume,  

the response  converges  to the static step inpu t  

wi thou t  peak pressure,  which  means  the system is 

overdamped .  In general ,  the f lu id-e las t ic  stiffness 

term due  to the compress ib i l i ty  of  the fluid 

becomes larger  with  decreas ing the t e rmina l  vol- 

ume, and  iner t ia  terms of  the mass in p ipe l ine  

becomes larger  with the tube  length. Thus,  it is 

physical ly  true tha t  the peak-p res su re  response  

time, related to the na tura l  f requency of  the sys- 

tem, becomes shor te r  with  decreas ing tube length 

and  te rmina l  volume. 
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Typical responses of the hydraulic transmission 

lines to the static step inputs and the discharge 

rate at the terminal volume are shown in Fig. 5. 

In the case of water, the fluid-elastic stiffness of 

the terminal volume is predominant to the damp- 

ing of the instrument system because of a relative- 

ly high bulk modulus of elasticity of water, as 

compared to that of air. In this case, it is required 

to have a very large volume receiver to see the 

dynamic characteristics of the overdamped sys- 

tem, which is not realistic for a hydraulic instru- 

ment system. Moreover, the inertia term for water 

is relatively larger compared to that of air. As a 

result, the critical damping coefficient of the 

hydraulic system easily overcomes the viscous 

damping coefficient. This is the main reason why 

the response of the instrument system, shown in 

the present analysis for water, has the under- 

damped characteristics. As shown in the results 

for pneumatic transmission lines, the response 
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Fig. 6 Axial variations of (a) pressure head and (b) 
flow rate for the hydraulic system (L=0.1m, Vq 
==Icc, D=Y2mm) at various times (-- -, t=0. 
00463; . . . .  , t = 0.00475; . . . .  , /=0.00488 and 
- - - ,  /=0.005 sec): Period based on lumped 
acoustic element method, Tt=0.000512 sec; 
period based on acoustic velocity, To = 0.000267 
SCC.  

converges more slowly to the static end condition 

with increasing the tube length. 

In Fig. 6, the axial variations of the pressure 

head and the flow rate are shown for a hydraulic 

system at various times during the period based 

on the lumped acoustic element method. As 

compared to the result for air, the change of 

pressure head or flow rate through the acoustic 

wave is very small and the pressure loss along the 

axial direction is influenced by the time derivative 

of the mean flow velocity. It is found that the 

phase difference between flow rate and pressure 

head is about 90 ~ which means the pressure head 

is in maximum value when the flow rate is about 

zero. The frequency of the dynamic response is 

strongly influenced by the lumped acoustic ele- 

ment system. It is found that the effect of the 

entrance or discharge head loss is minor even 

though the length of the pipe is relatively short. 

As an indication of a degree of damping for 

hydraulic system, the damping ratio of the pres- 

sure head at the end of the transmission line was 

primarily used. This gives a measure of the peak 

-to-peak attenuation of the pressure oscillation. 

For the present hydraulic system with small termi- 

nal volume and short pipe line, the damping 

factor can not be calculated by Eq. (19), because 

the effect of the time derivative of the mean 

velocity is significant in the momentum equations 

for hydraulic system. However, the natural fre- 

quency can be estimated by the lumped acoustic 

element method. The mean damping factor, 

presented in this paper for the hydraulic: system, is 

defined as 

1 J H+~ ~ -  I 
~mean ~- -2~f  j~= l l n ( --1 H+~ j+" ) 

for ~',~ea,<< 1 (20) 

Since the system is not exactly linear, the mean 

values of the damping factor and the frequency 

are calculated considering the first 30 peak-to 

-peak pressures. As shown in Table 3, the approx- 

imated mean damping factor is increased and the 

mean natural frequency is decreased with length 

of the line. For a relatively long pipe with small 

receiver volume, however, the damping factor 

becomes smaller, which might be due to the effect 
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of  the dead end. It is interesting to note that the 

damping  factor of  the pressure for the present 

hydraul ic  systems becomes smaller  with increas- 

ing terminal  vo lume and decreasing tube diame- 

Table 3 The mean damping factor and natural 

frequency and the approximated natural 

frequency by the lumped element 

method, for hydraulic transmission line. 

D ( m m )  V~(cc) L ( m )  ~m~,, co . . . .  ~oz 

0.01 0.0046 41,930 42,538 

0.05 0.0089 17,870 19,023 
1 

0.1 0.0094 12,270 13,451 

0.5 0.0086 3,800 6,015 
3.2 

0.01 0.0021 18,960 19,023 

0.05 0.0047 8,390 8,507 
5 

0.1 0.0064 5,850 6,015 

0.5 0.0098 2,450 2,690 

O.Ol 0.0031 26,440 26,580 

0.05 0.0062 11,990 11,889 
2.0 1 

O. 1 0.0085 8,260 8,407 

0.5 0.0129 3,010 3,760 

ter. This trend reverses the effects of  tube diameter  

and terminal vo lume given for air. The  mean 

damping factor is quite larger than that calculated 

by Eq. (19), which is not shown here. 

In Fig. 7, the responses, obtained by the present 

and existing methods for relatively long tube 

length and small terminal volume (although, this 

kind of  system might be not used in a practical  

instrument system), are presented and the results 

are compared to the calculated result by the 

present method for dead end. The peak pressure 

of  the response is approximately twice of  the 

static input, which means that the wave is reflect- 

ed with only a slight reduction in ampli tude and 

no change in phase. This phenomenon is physi- 

cally true for the dead end of  the acoustic device. 

G o o d  agreement was found between the results. 

To investigate the dynamic response to a sud- 

den pressure change containing sinusoidal distur- 

bance, the present method is applied to the pneu- 

matic instrument systems of  relatively long pipe- 

line and the hydraul ic  instrument systems of  rela- 
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Fig. 7 Comparison of (a) the responses to the static step 

inputs (b) discharge rate at end of the transmis- 
sion line for relatively long hydraulic system (L 
=5m, D=6.4mm) ,  obtained by the present 
numerical method for Vq=20cc ( ), Vq=O 
cc ( . . . . .  ) and the existing analytical method for 
Vq-- 20cc (-- ). 
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Fig. 8 (a) Typical dynamic response ( ) to the step 
input including sinusoidal disturbance ( . . . .  , H + 
=1 Z/H'=0.2 co=llrad/sec)  and a typical 
response ( -- ) to the static step input and (b) 
discharge rates at end of the transmission line for 
pneumatic system (L=15m D=6.4mm Vq= 

5000 cc ) 
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Fig. 9 Attenuation-frequency curves for pneumatic sys- 
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Fig. 10 (a) Typical dynamic response ( ) to the step 
input including sinusoidal disturbance ( . . . .  , H~ 
~1 /IH§ ~o--3000rad/sec) and (b) dis- 

charge rate at end of the transmission line for 
hydraulic system (L=0.1m D=3.2~>zrn Vq=2 
C C  ) 

t ively short pipeline. The dynamic response con- 

sists of  the static and the harmonic  components .  It 

is of  interest to evaluate the ampli tude ratio of  the 

harmonic  response to the sinusoidal input, espe- 

cially for the long pneumatic  instrument system. 

The typical result is shown in Fig. 8 for a pneu- 

matic instrument system. As shown in the previ- 

r t i 
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t 

Fig. 11 Dynamic resonance of the harmonic response 
( - - - )  to the step input including sinusoidal 
disturbance ( . . . .  , H~=  I z/H +~ 02 co= 8000 
rad/sec) for hydraulic system (L=0.1m D=3.2 
mm Vq=2Cc), as a Helmholtz resonator. 

ous stat ic-response,  the response converges to the 

dynamic  end condit ions.  The  characteristics of  the 

static componen t  is similar  to that of  the static 

response shown before. It was found that  the 

ampl i tude  ratio and phase lag of  the harmonic  

response to the s inusoidal  input were 0.325 and 2. 

156 tad ,  respectively. Thus,  it is desired to obtain  

the ampli tude ratio versus frequency a,; shown in 

Fig. 9. These dynamic responses, as a result of  

frequency response analysis, could  not be used 

directly to predict the other  dynamic responses, 

since the system was nonlinear.  However ,  rough 

approximat ions  over  a limited range could  be 

obtained by the methods used in l inear analysis. 

The results indicate that the harmonic  responses 

to the s inusoidal  disturbances are attenuated with 

increasing frequency of  sinusoidal  disturbances.  

As can be seen in Fig. 10 for the hydraul ic  

instrument system of  relatively short pipeline, the 

ampli tude of  the harmonic  response is a lmost  

equal  to the sinusoidal  inputs. The phase lag to 

the input does not exist because of  the relatively 

short pipeline. If the wave length in the fluid is 

much longer  than the dimensions of  the device, 

analysis of  acoustic devices becomes simple; e.g.,  

for hydraul ic  instrument system with relatively 

short pipeline. As shown in Fig. I1, resonance 

occurs when the excitat ion frequency of  the 

sinusoidal dis turbance is approximately  equal  to 

the natural frequency, co~=cfX/ - (LI /q) ,  of  the 

lumped acoustic system. The ampli tude ratio of  
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the harmonic response is found to be approxi- 

mately triple of that of the sinusoidal inputs. 

5. Conclusions 

A numerical approach, for evaluating the 

response of transmission lines to a sudden pres- 

sure changes including sinusoidal inputs, has 

been developed. This analysis is based on method 

of  characteristics, which is used to transform the 

partial differential equations into the ordinary 

differential equations integrable along the charac- 

teristic lines. The dynamic characteristics of dead 

-ended or volume-terminated transmission lines 

have been studied. Numerical results were calcu- 

lated for pneumatic and hydraulic systems. The 

governing equations including boundary condi- 

tions for compressible fluid flow have been devel- 

oped. The results obtained by application of the 

equations should provide adequate information 

for design of the system. The present numerical 

approach has less restrictions and less empirical 

correction factors, which arise from an analytical 

approach. To verify the present numerical 

approach, the present results have been compared 

with those of the existing analytical approach, 

where the both approaches can be applicable. The 

agreement between the results was found to be 

satisfactory. 

To indicate the degree of damping on the 

pressure head at the end of the transmission line, 

an analytical method is developed based on the 

viscous pressure loss due to the skin friction. It is 

found the method might be useful for pneumatic 

system with long tube. For hydraulic system, 

logarithmic decrement method is used to evaluate 

the damping factor. For  the present pneumatic 

system, the viscous damping through the transmis- 

sion pipeline becomes larger with increasing 

pipeline length and decreasing diameter of the 

pipe and the fluid-elastic stiffness decreases with 

increasing the terminal volume. However, the 

effect of tube diameter and terminal volume on 

the response reverses this trend for the hydraulic 

system. The viscous damping coefficient for rela- 

tively long pipe can overcome the critical damp- 

ing coefficient with increasing the terminal vol- 

ume, due to the relatively small fluid-elastic stiff- 

hess for pneumatic system. 

By inspection of the present results, some gen- 

eral conclusions are found; (1) it is required for 

pneumatic instrument systems to use relatively 

long transmission pipeline and large terminal 

volume in order to have an overdamped dynamic 

characteristic of the response to the step input, (2) 

amplitude ratio of the harmonic response to 

harmonic input decreases with frequency of the 

input for pneumatic system, (3) the response of 

pressure to the static step input is converged more 

or less within a period given by the lumped 

acoustic element method, (4) a relatively long 

transmission pipeline is not suitable for hydraulic 

instrument system because of waterhammer in the 

pipeline, (5) the frequency can be estimated by the 

lumped acoustic element method for hydraulic 

system and (6) resonance on the harmonic 

response due to the lumped acoustic impedance 

occurs for hydraulic system. It is noted the effect 

of the entrance and discharge head loss is minor 

even though the transmission line is relatively 

short. 

References  

Abbott,  M. B., 1966, "An Introduction to the 

Method of Characteristics," American Elsevier, 
New York. 

Bradner, M., 1949,"Pneumatic Transmission 

Lag," Instruments, Vol. 22, pp. 618~625. 

Bulaty, T. and Niessner, 1985, "Calculation of 

I -D  Unsteady Flows in Pipe Systems of I. C. 

Engine," Journal of  Fluids Engineering, Vol. 

107, pp. 407~412. 

Chaudhry, M. H., 1987, "Applied Hydraulic 

Transients," Van Nostrand Reinhold, 2rid ed., 
New York. 

Evangelisti, G, 1969, "Waterhammer Analysis 

by the Method of Characteristics," L'Energia 
Electrica, Nos. 10~12, pp. 673~692, 759~770, 839 
~858. 

Holloway, M. B. and Chaudhry, M. H., 1985, 

"Stability and Accuracy of Waterhammer Analy- 



Transient Analysis for Compressible Fluid Flow in Transmission Line... 185 

sis," Advances in Water Resources, Vol. 8, pp. 
121~128. 

lberall, A. S., 1950, "Attenuation of Oscillatory 
Pressures in Instrument Lines," Journal of  
Research of  the National Bureau of  Standards, 
Research Paper RP2115, Vol. 45, pp. 85~108. 

Kinsler, L. E., Frey, A. S., Coppens, A. B. and 
Sanders, J. V., 1982, "Fundamentals o f  Acous- 
tics," John Wiley & Sons, 3rd ed., New York. 

Moise, J. C., 1954, "Pneumatic Transmission 
Lines," Journal of  the ISA, Vol. 1, pp. 35~40. 

Rohmann, C. P. and Grogan, E. C., 1957, "On 
the Dynamics of Pneumatic Transmission Lines," 
Trans. A SME, Vol. 79, pp. 853~867. 

Sabersky, R. H, Acosta, A. J: and Hauptmann, 
E. G., 1971, "Fluid Flow," Macmillan Co., 2nd 
ed., New York. 

Schuder, C. B. and Binder, R. C., 1959, "The 
Response of Pneumatic Transmission Lines to 
Step Inputs," Journal of  Basic Engineering, Vol. 
81, pp. 578~584. 

Wiggea, D. C., Otwell, R. S. and Hatfield, F. 
J., 1985, "The Effect of Elbow Restraint on 
Pressure Transients," Journal of  Fluids Engi- 
neering, Vol. 107, pp. 403~406. 

A p p e n d i x  

The response of pneumatic transmission lines 
to the step input has been conducted analytically, 
based on a one dimensional uniformly distributed 
system, small, reversible, adiabatic-pressure chan- 
ges and laminar flow, by Schuder and Binder 
1959). The two basic differential equations gov- 
rning the transient flow in pipes are 

3 u  1 31o 
ax pc at 
3u _ 3u 
ax o T {  - - I R u  (a) 

subjected to boundary conditions at the sending 
reservoir and the receiver; 

p-Po  = 1 
P,~-- Po 

o A u =  Vq do (b) 
dt 

(_3AuA where fR -- D2 ] is the tubing resistance. 

Using Laplace transformation of the governing 
equations including the boundary conditions,the 
solution of the system was obtained. With inverse 
translbrmation, a complete picture of pressure as 
a function of x and t is expressed as 

p - P 0  
Pm-- Po 

at fR Ot -y.T~ cos~-  + ~ - s i n ~ -  

= 1 - 2 e ~  aI(~--~-+ l)sin a #'Vqa~-cas a] 

fR ~ 2ac 
for ~ - -  T (c) 

P - P o  
P,~-  po 

Ot f~l Ot 
- s , r~  c~ + ~ i r l h ~ t - t  

fR~ 2ac for ~ - >  ~ (d) 

where O--[{ 2ac ~2_{ fe ]]'/2 A L  
- - [ \  L } \ L } ]  , a t a n  a - -  Vq 

The value of a may be obtained by a numerical 
method; e.g., the secant method. 


